
情報処理学会 試行標準 IPSJ-TS 0015:2015
Information Processing Society of Japan - Trial Standard  

IPSJ-TS 0015:2015 

エラー訂正機能付き高信頼伝送路符号 4b/10b

Dependable Line Code with Error Correction Capability: 
4b/10b

Publication of version 1 
(this version) 2015-09-07 

Publication of version 2 -- 

Publication of version 3 -- 

Cor.1 to this version -- 

Comment to TS desk of IPSJ/ITSCJ 

Copyright ©2015 IPSJ/ITSCJ, All Right Reserved. 

Contents

Foreword (in Japanese)

0. Introduction
1. Scope
2. Normative references
3. Terms and definitions
4. 4b10b line code

Annex A (informative) Real-time scheduling
Annex B (informative) Characteristics of embedded clock
Annex C (informative) Characteristics of DC balance
Annex D (informative) Implementation of a decoder

Patent Statement



The IPSJ draws attention to the fact that it is claimed that compliance with this 
Trial Standard may involve the use of patents concerning Japanese patent application 
No. 2012-14181. 

The IPSJ takes no position concerning the evidence, validity and scope of this patent 
right. The holder of this putative patent right has assured the IPSJ that it is 
willing to negotiate licences under reasonable and non-discriminatory terms and 
conditions with applicants throughout the world. In this respect, the statement of the 
holder of the putative patent rights is registered with the IPSJ. Information may be 
obtained from: 

Faculty of Science and Technology, Keio University
3-14-1, Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan. 

Attention is drawn to the possibility that some of the elements of this Trial Standard 
may be the subject of patent rights other than those identified above. The IPSJ shall 
not be held responsible for identifying any or all such patent rights. 



Information Processing Society of Japan - Trial Standard IPSJ-TS 
0015:2015

Dependable Line Code with Error 
Correction Capability: 4b/10b 

0. Introduction

This trial standard defines a line code that incorporates the error correction 
capability to communicate among components, I/O peripherals and computers reliably. 
Complex machines, such as robots, automobiles, and network routers, have a growing 
demand for distributed processing. In addition, modernization of facilities such as 
factories, offices, schools, and homes is creating a ubiquitous computing environment. 
Unlike conventional PC applications for documentation and Internet applications that 
exchange texts without hard time constraints, these types of cooperative computing 
require reliable real-time responses to physical events occurring in the real world. 
In order for distributed nodes to cooperate in real-time, an interconnecting network 
shall realize real-time and dependable communication without re-sending on noisy 
environments. The 4b/10b provides a dependable line code for such real-time 
communications between components, I/O peripherals and/or computers by providing 
embedded clock, DC balance, error detection and error correction features. 

0.1 Real-time

The real-time means that the exactness of the system including operations and 
communications depends on not only the result but also the time it took to achieve the 
result. In the narrow sense, the real-time means that the time constraint including 
deadline or cycle must be met. 

Real-time tasks with the time constraints are generally scheduled and executed by a 
real-time scheduler and a real-time operating system. Most real-time scheduling 
algorithms assume that the WCET (Worst Case Execution Time) of each task is given. A 
real-time scheduling algorithm converts a time constraint of each real-time task to a 
priority. Most real-time operating systems based on such real-time schedulers preempt 
and execute tasks in order of priority at every tick to meet the time constraint. 

0.2 Real-time scheduling

As real-time scheduling algorithms, the Earliest Deadline First (EDF) scheduler, the 
Rate Monotonic (RM) scheduler, and their variations have been established, as 
explained in Annex A. These algorithms commonly schedule tasks based on priorities 
determined by the time constraints. 

Most real-time scheduling algorithms assume that the WCRT (Worst Case Response Time) 
of each communication packet is given in case of communication. In order to apply 
real-time scheduling algorithms to real-time communications, preemptive communication, 
which is achieved by Responsive Link, and the error correction capability to prevent 
from re-sending a broken packet are required. 

0.3 Line code

A line code is a lowest-level communication protocol on a communication line. Most 
current line codes have a few typical functions including embedded clock, DC balance 



and basic error detection features. The 8b/10b codec is a major example, which is used 
for PCI Express, USB 3.0, SATA, IEEE1394b, and 10GbE. But no conventional line code 
has an error correction capability. 

0.4 Demerits of the 8b/10b codec

When an encoded code (a 10b code) is broken during communication, the multi-bits of 
the decoded code (the 8b code) is corrupted. In other words, when a single bit error 
occurs in an encoded 10-bit code, the decoded 8-bit code (a byte) is completely 
broken. 

When an error is detected on the decoder, the broken data is normally re-transmitted 
under an upper-level communication protocol. However, the re-transmission is not 
allowed to realize a real-time communication. 

It is hard for a bit-level error correction code including the Hamming code and the 
BCH code to incorporate the error correction capability, because multi-bits of the 
decoded code is broken even if a single-bit error occurs on the encoded code. 

In order to incorporate the error correction capability on the 8b/10b codec, a block-
level error correction including RS (Reed Solomon) is required as a large packet level 
error correction. But the block-level error correction is not suitable for real-time 
communication, because the communication latency becomes longer as it is impossible to 
correct the corrupted data until all corresponding packet are received. 

0.5 Important features

The line code 4b/10b has the following distinctive features for real-time 
communications: 

• Embedded clock 
• DC balance 
• Error detection 
• Error correction 

No conventional line code supports the above features at one time. For example, the 
industry-wide standard 8b/10b codec can be easily replace with the 4b/10b line code 
for highly reliable communications. 

0.6 Typical applications and operations

Figure 1 shows a distributed control configuration of a humanoid robot as one of 
typical applications of the 4b/10b. The electronic control part of the humanoid robot 
consists of several control nodes with local sensing and actuating devices. The 
distributed controllers are connected to each other by Responsive Link. In this 
figure, rectangles represent node controllers, and dotted lines show communication 
links such as the Responsive Link that is a point-to-point serial link. 



Figure 1 - A humanoid robot

For a humanoid robot to walk stably, a servo loop of 1 ms or shorter is needed. In 
this configuration, the farthest two nodes can exchange a 16-byte packet within 5 μ
sec. Since the time is guaranteed not to fluctuate, the distributed control of a 
humanoid is considered to be sufficiently possible. Since many actuators that generate 
noises are embedded inside the robot, the line code is required for noise tolerance. 
The 4b/10b is the line code that has error correction capability. 

Currently many I/O interfaces and communication standards including PCI Express 
(PCIe), USB 3.0, SATA, IEEE 1394b, and 10GbE use the 8b/10b codec as a line code. The 
8b/10b has a lot of functions and its code rate is relatively high (about 80%). 
However if one bit error occurs in an encoded data (10b), the decoded data (8b) will 
be broken completely. Therefore when the 8b/10b codec is used on noisy environment 
such as inside the robot, an upper-level error correction code is required. In order 
for error correction, it is hard to apply any bit-level error codec including the 
Hamming code and the BCH code, because multiple decoded bits (1-byte) will be broken 
even if an encoded bit is inverted, so that block-level error correction including 
Reed-Solomon, which is long latency ECC that is not suitable for real-time 
applications, is required. Hence a reliable line code with ECC is highly required for 
such applications. 

1. Scope

This trial standard specifies the line code 4b/10b for dependable communications. This 
standard corresponds to the functions specified in layer 1 to layer 2 of the OSI 
reference model. 

The purpose of this standard is to facilitate the development and use of the 4b/10b in 
dependable systems by providing a line code protocol. This standard provides a line 
code protocol for interconnections among distributed real-time systems, including 
embedded systems, control systems, amusement systems, robot systems, and intelligent 
buildings. The 4b/10b can achieve the line code with ECC (error code correction). The 
4b/10b is the line code that realizes embedded clock, DC balance, error detection and 
error correction at a time, which was not able to satisfy these functions in one codec 
by conventional schemes, so that the 4b/10b line code can achieve highly reliable and 
dependable digital communications. 



2. Normative references

2.1 OSI reference model

ISO 7498, Open System Interconnection - Basic reference model 

2.2 Responsive Link (RL)

ISO/IEC 24740:2008, the communications protocol and interface that inter-connect 
computers for distributed real-time control applications 

2.3 8b/10b

Albert X. Widmer, 8b/10b encoding and decoding for high speed applications, IBM 
research report, 2004-1103 

2.4 PCI Express (PCIe)

PCI Express base specification, PCI-SIG 

http://pcisig.com/ 

2.5 USB 3.0

Universal Serial Bus Revision 3.0 Specification, USB Implementers Forum 

http://www.usb.org/ 

2.6 SATA (Serial ATA)

Serial I/O interface for hard drive, SSD, and optical drive, Serial ATA working group 

http://www.sata-io.org/ 

3. Terms and definitions

For the purpose of this standard, the following definitions apply: 

3.1 byte (B)

A group of eight bits 

3.2 half byte (HB)

A group of four bits 

3.3 4b

Original half byte (4-bit) data 

3.4 10b



Encoded 10-bit data for transmitting 

3.5 symbol

A unit for encoding 

The size of a symbol is 10 bits. 

3.6 Frame

A unit for transmitting 

The size of a frame is 10 bits. 

3.7 ECC

Error Correction Code 

3.8 DC

Direct-Current 

3.9 WCET

Worst Case Execution Time 

3.10 WCRT

Worst Case Response Time 

4. 4b/10b line code

4.1 Overview

The line code 4b/10b shall handle a 10-bit frame encoded by 4-bit digits. The original 
4 bits of information digits shall be encoded into a 10-bit frame by the look-up table 
shown in Table 1. A byte (8 bits) is divided into two half bytes (4b). A half byte 
(4b) is encoded to a symbol (10b). A frame consists of a symbol and is transmitted to 
the communication line. Since four bits are encoded to ten bits by the 4b/10b line 
code, the communication speed at 1,000 MHz is approximately equal to 400 Mbit/s. 

4.2 Forward error correction (FEC)

The line code 4b/10b should provide error-free transmission for reliable real-time 
control. Error correction should be performed by hardware. The 4b/10b shall perform 
line-code-level error correction. Original four-bit data (4b) shall be encoded to 10-
bit transmitting data with embedded clock, DC balance, 2bit error detection, and 1-bit 
error correction for a half byte data (4 bits of information digits). 

The Hamming distance of any digits in a symbol (10b code) shall be longer than or 
equal to 4 for 1-bit error correction and 2-bit error detection. 

4.3 Embedded clock



The line code 4b/10b keeps that successive 0 or 1 bits shall be within five bits, even 
if 1-bit error/symbol occurs. 

In case of inside symbol digits, successive 0 or 1 bits shall be within five bits. 

In case of inter-symbol digits, successive 0 or 1 bits shall be within five bits. 

When each symbol has 1-bit error, if the distance of error bits are greater than four-
bit, the successive 0 or 1 bits are within five bits. 

In case of two bit errors, discontinuity of digits is not guaranteed. 

4.4 DC balance

In order for the line code 4b/10b not to allow a current to flow in the communication 
cable, the numbers of 0 and 1 in a symbol shall be same for DC balance. But DC balance 
between successive symbols is not necessary. 

If an error occurs, bit-level DC balance is not guaranteed among nearest neighbour 
error symbols. 

4.5 4b/10b data encoding

In case of encoding, the look-up table that satisfies the above three conditions 
including embedded clock, DC balance, and error detection and correction, is used as 
shown in Table 1. Original 4-bit digits (4b) are encoded to 10-bit digits (10b). 

Table 1 - The 4b/10b data transform table

4b 10b 

0000 1100101100 

0001 1011001100 

0010 1100110010 

0011 0110011100 

0100 0111010001 

0101 1100011001 

0110 0101110100 

0111 1101000101 

1000 1001110001 

1001 0111000110 

1010 1010110100 

1011 1101001010 

1100 1011010010 

1101 1001100110 

1110 1010101001 

1111 0110101010 

4.6 Frame format

4.6.1 Frame

A frame shall consist of 10 bits, including 4 information bits and 6 redundant bits 
implicitly, as shown in Table 1. 



4.6.2 Setup command

After the power is first applied, or after an unexpected burst link error occurs, the 
synchronization between the sender and the receiver can be lost. In such a situation, 
the link shall be initialized explicitly. The encoder in the initial mode shall send 
the setup pattern shown in Table 2. The decoder can distinguish the pattern from 
normal frames and thus switches to the initial mode. The initialized decoder 
interprets the first receiving frame after the initialization as the start frame of a 
new frame sequence. 

Table 2 - Setup command

Setup pattern 

0110100101 

4.6.3 Idle command

When an encoder has no actual communication data, the encoder shall send the idle 
pattern shown in Table 3 in order to maintain the frame synchronization of the link. 

Table 3 - Idle command

Idle pattern 

0101101001 

4.7 Encoding

The look-up table that satisfies embedded clock, DC balance, error detection and 
correction, and control commands including setup and idle command is shown in Table 4. 
In case of encoding, the 4b/10b look-up table shall be directly used. 

Table 4 - The 4b/10b look-up table

4b (i) 10b (Ci) 

0000 1100101100 

0001 1011001100 

0010 1100110010 

0011 0110011100 

0100 0111010001 

0101 1100011001 

0110 0101110100 

0111 1101000101 

1000 1001110001 

1001 0111000110 

1010 1010110100 

1011 1101001010 

1100 1011010010 

1101 1001100110 

1110 1010101001 

1111 0110101010 

setup 0110100101 

idle 0101101001 



4.8 Decoding

Decoding shall be based on the shortest distance decoding on the Hamming distance. An 
implementation of a decoder is illustrated in Annex D. 

4.9 Error handling

4.9.1 1-bit error

The encoding scheme of the 4b/10b can automatically detect and correct any 1-bit error 
in a frame. However, when errors of greater than 2 bits are present in a frame, the 
error correction mechanism does not work. In such a situation, the calculation of the 
syndrome results in one of the following two cases: 

4.9.2 2-bit error

In this case, the decoder can detect an unrecoverable fatal error. If a fatal error is 
detected in a frame, then the decoder shall not try to correct digits in the received 
frame and should interrupt the controller (processor). 

4.9.3 Over 3-bit error

Although the probability of this case is very low, the decoder cannot detect the 
occurrence of the fatal error in this case. Since this error is indistinguishable from 
other correctable 1-bit errors, the received frame is inadequately modified by the 
decoder. This situation allows transmission of an incorrect packet and is highly 
undesirable. Therefore, when simple 1-bit errors are corrected in two successive 
frames, the decoder shall consider this to be a fatal error that cannot be corrected, 
and so handle the frame in the manner described above. 



Annex A (informative)
Real-time scheduling

There are several real-time scheduling algorithms, including Earliest Deadline First 
(EDF), which is an optimal dynamic scheduling algorithm, and Rate Monotonic (RM), 
which is an optimal static scheduling algorithm. 

The EDF algorithm translates the deadline to a priority. The priority of the task with 
the earliest deadline becomes the highest. 

The RM algorithm translates the cycle time to a priority. The task with the shortest 
cycle is assigned to have the highest priority. 

Many other real-time scheduling algorithms also translate the time constraint to a 
priority. 

Figure A.1 shows an example of EDF scheduling. Priority-based scheduling is performed 
at every clock tick and at timings when tasks are released (invoked), as well as at 
execution finish. 

Figure A.1 - EDF scheduling

This real-time task scheduling process can be regarded as an overtaking process, i.e. 
tasks with higher priorities are executed earlier than tasks with lower priorities. In 
order to implement this idea in a distributed real-time system, communication of 
higher priority tasks should be able to overtake other communication. The Responsive 
Link does this at every node. 



Annex B (informative)
Characteristics of embedded clock

The line code 4b/10b keeps that successive 0 or 1 bits shall be within five bits, even 
if 1-bit error/symbol occurs. 

In case of inside symbol digits, successive 0 or 1 bits shall be within five bits. For 
example, if 1-bit error occurs on 1100110010 symbol, successive 0 or 1 bits are within 
five bits as shown in Table B. 

Table B - The length of successive 0 or 1 in case of 1-bit error

The 
number of 
errors 

Line code 
The length of 
successive 0 

or 1 

0 
(original)

1100110010 2 

1 0100110010 2 

1 1000110010 3 

1 1110110010 3 

1 1101110010 3 

1 1100010010 3 

1 1100100010 3 

1 1100111010 3 

1 1100110110 2 

1 1100110000 4 

1 1100110011 2 

In case of inter-symbol digits, successive 0 or 1 bits shall be within five bits. For 
example, inter-symbol successive 0 or 1 bits of 

1100110010 1001110001 symbols are within five bits. 

When each symbol has 1-bit error, if the distance of error bits are greater than four-
bit, the successive 0 or 1 bits are within five bits as follows. 

• 1100110010 1001110001: Original 
• 1100110000 1000110001: 1-bit error/symbol 

In case of two bit errors, discontinuity of digits is not guaranteed. 



Annex C (informative)
Characteristics of DC balance

In order for the line code 4b/10b not to allow a current to flow in the communication 
cable, the numbers of 0 and 1 in a symbol shall be same for DC balance. But DC balance 
between successive symbols is not necessary. In other words, the isomery of 0 and 1 
inside a symbol is guaranteed. But the isomery of 0 and 1 in any connecting 10-bit 
window is not guaranteed as shown in Table C. 

Table C - An example of the isomery of 0 and 1 in a successive 10-bit window

Window 
number 

10-bit window 
The 

number 
of 1 

0 
1100101100 
0111010001 

5 

1 
1100101100 
0111010001 

4 

2 
1100101100 
0111010001 

4 

3 
1100101100 
0111010001 

5 

4 
1100101100 
0111010001 

6 

5 1100101100 
0111010001 

5 

6 
1100101100 
0111010001 

6 

7 
1100101100 
0111010001 

5 

8 
1100101100 
0111010001 

4 

9 
1100101100 
0111010001 

4 

If an error occurs, bit-level DC balance is not guaranteed among nearest neighbour 
error symbols. 



Annex D (informative)
Implementation of a decoder 

1. Each Hamming distance HDi between a received frame (10b) and each symbol Ci as 
shown in Table 3 shall be calculated. 

2. Minimum value of the Hamming distance HDmin is calculated by the following 
equation: 

HDmin = min{ HDi }. 

When HDk is equal to HDmin, the 10b Ck is decoded to the 4b k. 

3. If HDmin is equal to 0, the 10b Ck is decoded to the 4b k without error. 

If HDmin is equal to 1, the 10b Ck is decoded to the 4b k. In this case, 1-bit 
error is corrected, and the corrected error should be informed to the upper 
layer. 

If HDmin is greater than 1, the 10b Ck is decoded to all 0. In this case, multiple 
bit error is detected, and the error should be informed to the upper layer. The 
decoded 4b k (all 0) is broken. 

4. The 10b symbol Ck and corresponding decoded 4b k are determined. 


