
XXX IEC:201X – 1 – XXX CEI:201X

CONTENTS

FOREWORD... 2
Introduction .. 4
1 Scope .. 6
2 Normative references ... 7
3 Terms, definitions and abbreviations ... 8

3.1 Terms and definitions .. 8
3.2 Abbreviation .. 11

4 The Specification of the universAAL UI Framework .. 12
4.1 Analysis of the relationships between UI Handlers and I/O Channels 12
4.2 Dialog Descriptions .. 15
4.3 The Adaptation Concept .. 18
4.4 Provisions of the UI Framework ... 24

Annex A (informative) ... 34
A.1 Use Case: Supporting rich human computer interaction .. 34
A.2 Use Case: Healthy Lifestyle Service Package Use Case (universAAL) 34

Bibliography ... 35

Table of figures

Figure 1 – Paradigm shift from HCI to HEI ... 4
Figure 2 – logical separation of application and presentation layers 5
Figure 3 – UI framework separating application development from the management of th I/O
infrastructure .. 6
Figure 4 – The scope of the specified UI framework marked by the green colour 7
Figure 5 – The notion of AAL Spaces .. 8
Figure 6 – The need of smart environments to utilize channels for bridging between the physical
world and the virtual realm .. 9
Figure 7 – The role of devices in realizing bridging channels .. 10
Figure 8 – Channel binding by I/O devices .. 12
Figure 9 – The notion of a driver with the case of a UPNP-aware driver 13
Figure 10 – The case of a universAAL aware driver ... 13
Figure 11 – Possible relationship between UI handlers and drivers 14
Figure 12 – The dialog package based on the notion of a form ... 16
Figure 13 - A possible graphical visualization of the mapping between dialog types and the
predefined standard groups .. 17
Figure 14 – The universAAL framework for supporting adaptivity, which builds on top of the
universAAL context and service buses .. 19
Figure 15 – A model for describing access impairments ... 21
Figure 16 – Summary of the adaptation parameters ... 23
Figure 17 – The components comprising the universAAL UI framework 24
Figure 18 – The main messages exchanged on the UI Bus .. 25
Figure 19 – The notion of a UI request from the view of applications 26
Figure 20 – Overview of the sequence of actions when the priority check is positive 26
Figure 21 – The case of switching to a new UI handler when handling changes in the context28

XXX IEC:201X – 2 – XXX CEI:201X

 1

INTERNATIONAL ELECTROTECHNICAL COMMISSION 2
____________ 3

 4
TITLE – The universAAL Framework for User Interaction in AAL Spaces 5

 6
Part X: 7

 8

FOREWORD 9

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising 10
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote 11
international co-operation on all questions concerning standardization in the electrical and electronic fields. To 12
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, 13
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC 14
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested 15
in the subject dealt with may participate in this preparatory work. International, governmental and non-16
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely 17
with the International Organization for Standardization (ISO) in accordance with conditions determined by 18
agreement between the two organizations. 19

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international 20
consensus of opinion on the relevant subjects since each technical committee has representation from all 21
interested IEC National Committees. 22

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National 23
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC 24
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any 25
misinterpretation by any end user. 26

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications 27
transparently to the maximum extent possible in their national and regional publications. Any divergence 28
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in 29
the latter. 30

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity 31
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any 32
services carried out by independent certification bodies. 33

6) All users should ensure that they have the latest edition of this publication. 34

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and 35
members of its technical committees and IEC National Committees for any personal injury, property damage or 36
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and 37
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC 38
Publications. 39

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is 40
indispensable for the correct application of this publication. 41

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of 42
patent rights. IEC shall not be held responsible for identifying any or all such patent rights. 43

A PAS is a technical specification not fulfilling the requirements for a standard, but made 44
available to the public. 45

IEC-PAS 60000 has been processed by subcommittee XX: TITLE, of IEC technical 46
committee XX: 47

The text of this PAS is based on the
following document:

This PAS was approved for
publication by the P-members of the
committee concerned as indicated in

the following document

Draft PAS Report on voting

XX/XX/PAS XX/XX/RVD

XXX IEC:201X – 3 – XXX CEI:201X

 48
Following publication of this PAS, which is a pre-standard publication, the technical committee 49
or subcommittee concerned may transform it into an International Standard. 50

This PAS shall remain valid for an initial maximum period of 3 years starting from the 51
publication date. The validity may be extended for a single period up to a maximum of 3 years, 52
at the end of which it shall be published as another type of normative document, or shall be 53
withdrawn. 54

55

XXX IEC:201X – 4 – XXX CEI:201X

Introduction 56

Ambient Assisted Living (AAL) systems encompass products, services, environments and 57
facilities used to support those whose independence, safety, wellbeing and autonomy are 58
compromised by their physical or mental status. AAL especially is about the usage of ICT for 59
creating intelligent living environments that react to the needs of their inhabitants by providing 60
relevant assistance. Such intelligent environments can be labelled as AAL Spaces. Multiple 61
users can find themselves in an AAL space simultaneously, possibly moving around within the 62
AAL space, and entering and leaving it dynamically. These characteristics introduce new 63
challenges when it comes to handling interaction with users in AAL spaces. 64

With the assumption that people are surrounded by highly distributed systems of networked 65
interactive devices, AAL intensifies the paradigm shift from Human-Computer Interaction (HCI) 66
to Human-Environment Interaction (HEI). One of the main challenges of HEI is to keep the 67
multiplicity of functional units hidden to humans while making the functionality provided by 68
them easily available based on natural ways of interaction. Instead of controlling each device 69
separately, users should be able to interact with a whole device ensemble as one single unit 70
and articulate goals instead of looking for functionality at the level of each single device 71
separately (see figure 1). 72

 73

Figure 1 – Paradigm shift from HCI to HEI 74

75

XXX IEC:201X – 5 – XXX CEI:201X

Another important challenge for designers and developers of systems in AAL spaces is that 76
interaction with applications can take place through a variety of devices at different locations 77
with different capabilities in terms of serving a single user privately or not, supported 78
modalities, modality-specific parameters such as screen size and resolution, power 79
consumption, etc., which implies the need in AAL spaces to logically separate the application 80
layer from the presentation layer (see figure 2). 81

Presentation Layer

adaptive

interactionUser Interaction HandlerUser Interaction HandlerUser Interaction Handler

Application Layer

User Interaction HandlerUser Interaction HandlerApplication

adaptive (context-aware & personalized) brokerage

adaptive

control
 82

Figure 2 – logical separation of application and presentation layers 83

Consequently, applications have to use abstract user interfaces that are device-, modality-, 84
and layout-neutral and allow to postpone the rendering of the user interface to the execution-85
time, which makes it possible to interact with the users in a personalized and situation-aware 86
way. The separation of concerns also facilitates the creation of clean interfaces based on an 87
open and flexible architecture that have to enable the plug-and-play of both applications and 88
user interaction handlers (UI handlers), and allows UI handlers to serve arbitrary applications. 89

The resulted openness complements the openness supported by DIN IEC 62481-2 that 90
enables the sharing of multimedia content and streams within an ensemble of devices. It adds 91
the perspective of sharing the input and output channels provided by those devices1 to the 92
DLNA perspective of content sharing. 93

94

—————————
1 This understanding of the term I/O channel is based on the actual roles of devices that enable interaction with

human users: a display provides a visual output channel, a loudspeaker. an audio output channel, and a
microphone, an audio input channel.

XXX IEC:201X – 6 – XXX CEI:201X

1 Scope 95

This Publicly Available Specification (PAS) specifies the explicit interaction among humans 96
and AAL spaces. 97

Considering that AAL spaces target the assistance of several types of users with different 98
needs, preferences, and cultural and educational backgrounds, it becomes crucial that on one 99
hand, system output is presented to the addressed user in an adaptive and personalized way, 100
and on the other hand, user input can be provided with much flexibility and become more and 101
more natural as perceived by the specific user involved. 102

Another requirement is the necessity to consider that several input and output devices (I/O 103
devices) might be distributed overall in an AAL space that can be utilized for the explicit 104
interaction. 105

The term I/O infrastructure is used to refer to the set of concrete I/O channels available in an 106
AAL space. It should be stressed that the concrete I/O infrastructure in one AAL space might 107
differ substantially from the concrete I/O infrastructure in another AAL space so that a major 108
challenge for explicit interaction in AAL spaces is the separation of the application 109
development from the management of the concrete occurrences of the I/O infrastructure in 110
concrete AAL spaces. The universAAL UI Framework achieves this separation mainly by 111
introducing: 112

 a new type of software components called UI handlers that are capable of utilizing certain 113
types of I/O channels for performing the interaction with humans, and 114

 a brokerage mechanism between applications and UI handlers. 115

Although it might be possible to develop one single UI handler able to utilize all kinds of I/O 116
channels available in an AAL space, the framework should be open with regard to more 117
specific UI handlers that are "experts" in utilizing certain kinds of I/O channels and guarantee 118
a richer user experience. This might even go beyond the "expertise" in utilization of I/O 119
channels so that in future UI handlers might emerge that are experts in interacting with certain 120
types of users (see figure 3). 121

 122

 123

Figure 3 – UI framework separating application development from the management of th 124
I/O infrastructure 125

126

XXX IEC:201X – 7 – XXX CEI:201X

The proposed UI model encompasses the following elements (see figure 4): 127

 Analysis of the relationships between UI handlers and I/O devices without specifying 128
possible languages, models, or abstract APIs for interaction with these devices, as there 129
are certain international activities that go in this direction on representing user input 130
coming from input devices of the API of drivers for I/O devices in order to facilitate the 131
development of UI handlers 132

 The language and model for describing application-specific dialogs / user interfaces as 133
part of UI requests made by applications to the UI framework, 134

 The adaptation concept and parameters needed to achieve adaptive UI and the way they 135
affect UI requests, and 136

 Protocols used by the UI framework to broker between the pluggable components, i.e. UI 137
handlers and applications. 138

 139

Figure 4 – The scope of the specified UI framework marked by the green colour 140

2 Normative references 141

The following referenced documents are indispensable for the application of this document. 142
For dated references, only the edition cited applies. For undated references, the latest edition 143
of the referenced document (including any amendments) applies. 144

DIN IEC 62481-2 Digital living network alliance (DLNA) home networked device 145
interoperability guidelines - Part 2: DLNA media formats (IEC 62481-2:2007) 146

ISO/IEC Guide 71, Guidelines for standards developers to address the needs of older persons 147
and persons with disabilities 148

ISO 9241-11:1998, Ergonomic requirements for office work with visual display terminals 149
(VDTs) -- Part 11: Guidance on usability 150

ISO 9241-110:2006, Ergonomics of human-system interaction -- Part 110: Dialogue principles 151

152

XXX IEC:201X – 8 – XXX CEI:201X

3 Terms, definitions and abbreviations 153

For the purpose of this document, the following terms and definitions apply. 154

3.1 Terms and definitions 155

3.1.1 156

Ambient Assisted Living (AAL) 157
products, services, environments and facilities used to support those whose independence, 158
safety, wellbeing and autonomy are compromised by their physical or mental status. AAL 159
especially is about the usage of ICT for creating intelligent living environments that react to 160
the needs of their inhabitants by providing relevant assistance. 161

3.1.2 162

user 163
person who interacts with the product, service or environment 164
 165

3.1.3 166

AAL service user 167
person who interacts with an AAL system or is connected with an AAL system 168
 169

3.1.4 170

user interface 171
all components of an interactive system (software or hardware) that provide information 172
and/or controls for the user to accomplish specific tasks with the interactive system 173

3.1.5 174

AAL Space 175
Denotes different spaces, such as smart homes and cars (see figure 5), are characterized 176
with a high number of different kinds of devices that can be stationary, mobile or embedded 177
within other objects. Interaction in AAL Spaces falls into the category of human-environment 178
interaction, which is generally divided into two major areas: implicit and explicit interaction. 179

Implicit interaction is mostly about using sensing channels for observation of happenings, with 180
or without involvement of humans, in order to recognize in the background relevant situations 181
to which the environment might be able to react in a desired way. 182

Explicit interaction, on the contrary, is about situations in which a human user seeks the 183
dialog with the environment or vice versa, for instance when the user instructs that the 184
brightness of the TV is increased or when the environment notifies the user that it is time to 185
take a certain medicine. Explicit interaction takes place by utilizing input and output channels 186
provided by I/O devices (see the definitions provided in the next section on the Terminology). 187

 188

Figure 5 – The notion of AAL Spaces 189

The term AAL Space is used throughout this specification to refer to these environments. 190

XXX IEC:201X – 9 – XXX CEI:201X

3.1.6 191

Smart environment 192
Denotes an environment centred on its human users in which a set of embedded networked 193
artefacts, both hardware (HW) and software (SW), collectively realize the paradigm of 194
Ambient Intelligence, mainly by providing for context-awareness and personalization, adaptive 195
reactivity, and anticipatory pro-activity. Smart environments need to bridge between the 196
physical world and the virtual realm with the help of certain devices. 197

3.1.7 198

Channel 199
Denotes the bridging passage provided by such devices between the physical world and the 200
virtual realm (see figure 6). Depending on the kind of channel opened, a channel might be 201
called a sensing channel (provided by sensors), an acting channel (provided by actuators), an 202
input channel (provided by microphones, keyboards, etc.), or an output channel (provided by 203
displays, loudspeakers, etc.). The latter two types of channels might be referred to as I/O 204
Channels. Sometimes a single channel might be used both for sensing and input. 205

 206
 207

Figure 6 – The need of smart environments to utilize channels for bridging between the 208
physical world and the virtual realm 209

210

XXX IEC:201X – 10 – XXX CEI:201X

 211

3.1.8 212

I/O Device 213
An abbreviation for input and / or output device. A device that provides an input and / or 214
output channel for facilitating explicit interaction between a smart environment and its human 215
users. Input devices, such as a microphone, a keyboard, or a mouse, can capture an 216
instruction or response that is provided by a human user and represent it in terms of data in 217
the virtual realm (see figure 7). Upon receive of data within the virtual realm that is intended 218
to be presented to human users, output devices, such as displays and loudspeakers, can 219
make it perceivable to the addressed humans. 220

 221
 222

Figure 7 – The role of devices in realizing bridging channels 223

3.1.9 224

Multimodal UI handler 225
Denotes a handler which shall not care about modality used to present information. The 226
handler is not GUI-based. "Multimodal" as an adjective for UI handlers serves as an 227
abbreviated reference to the potential of performing the interaction using multiple channels in 228
parallel, possibly with a hybrid mix supporting different modalities. 229

 230

3.1.10 231

XForms 232
This is an XML format for the specification of a data processing model for XML data and user 233
interface(s) for the XML data, such as web forms. 234

[W3C XSLT Standard] 235

3.1.11 236

XPATH 237
XPath is used to navigate through elements and attributes in an XML document. 238

[W3C XSLT standard] 239

240

XXX IEC:201X – 11 – XXX CEI:201X

3.2 Abbreviation 241

AAL Ambient Assisted Living 242

API Application programming interface 243

DLNA Digital Living Network Alliance 244

e.g. for example 245

etc. et cetera 246

GUI Graphical user interface 247

HCI Human-Computer Interaction 248

HEI Human-Environment Interaction 249

HTML Hypertext Markup Language 250

HW Hardware 251

ICT Information and communications technology 252

i.e. id est, that is to say 253

I/O channels Input/Output channel 254

uAAL universAAL 255

OWL Web Ontology Language 256

RDF Resource Description Framework 257

RM Resource Manager 258

SW Software 259

UI User Interaction 260

UIML User Interface Markup Language 261

UPNP Universal Plug and Play 262

UI model User Interaction model 263

W3C World Wide Web Consortium 264

XML Extensible Markup Language 265

Cf confer 266

267

XXX IEC:201X – 12 – XXX CEI:201X

4 The Specification of the universAAL UI Framework 268

4.1 Analysis of the relationships between UI Handlers and I/O Channels 269

UI handlers are seen responsible for handling requests for interacting with human users. To 270
do so, they need to utilize the available I/O channels but are not necessarily supposed to take 271
over the binding and management of those channels. On the other side, the "manager" of a 272
single input or output channel is usually not able to handle the whole of a UI request sent by 273
an application because applications often wait for user response in the context of some info to 274
be presented to the user; as a result. At least one output channel and one input channel are 275
supposed to be utilized simultaneously by the same UI handler in order to be able to interpret 276
user input in the context of the output presented to the user. 277

Therefore, it is important to have a more precise look at the relationship between UI handlers 278
and I/O channels: Section 3.1 states that channels are realized by certain devices but it does 279
not say anything about their binding and availability in the virtual realm. In the concept map in 280
figure 8, those definitions are extended by introducing the concept of Channel Binding; the 281
same concept can be used for both input and output channels: 282

 283
 284

Figure 8 – Channel binding by I/O devices 285

286

XXX IEC:201X – 13 – XXX CEI:201X

The device that realizes a channel has to have an integrated solution for providing access to 287
the channel. This might be very low-level, at hard- and firmware level to exchange certain bits 288
and bytes through a physical connector interface (called Embedded Binding) or already 289
software using higher-level protocols and abstractions (called Driver). Drivers might be 290
provided by third-party and / or run on third-party devices. Like figure 9 denotes, a driver 291
might wrap another driver in order to comply with higher-level abstractions (e.g. a “UPNP 292
driver”) for binding a special-purpose device that is not readily “UPNP-aware” usually uses 293
“Embedded Bindings” or “Legacy Drivers” for providing wrappers that interact at the UPNP 294
level of abstraction. 295

In particular, the higher-level abstractions might only make sense in the context of a 296
framework created for certain purposes (cf. a windowing system that uses a mouse driver and 297
already interprets the mouse events in the context of the bunch of objects in the framework). 298

 299

Figure 9 – The notion of a driver with the case of a UPNP-aware driver 300

Similar to the UPNP-aware driver, a universAAL-aware driver should use the API of the 301
universAAL middleware in order to provide related data and functionality in the universAAL 302
realm2 (see figure 10): 303

 304

 305

Figure 10 – The case of a universAAL aware driver 306

—————————
2 The universAAL middleware provides for sharing data and functionality using the abstraction of virtual

communication buses that broker messages between attached components; there are three buses, each
responsible for a specific class of brokerage cases: the context bus works on a publish-subscribe base and is
responsible for the brokerage of events, the service bus works on a request-response base and brokers
services, and finally the UI bus (subject to discussion in the following sections) that brokers requests for
interaction with human users to UI handlers. The three buses of the universAAL middleware are quite in
analogy to the building blocks “Eventing”, “Control” and “Presentation” in the common architecture of UPNP. To
publish events on the context bus, a component has to extend an interface called “Context Publisher”, and to
provide services on the service bus, it has to extend “Service Callee”.

XXX IEC:201X – 14 – XXX CEI:201X

Like figure 11 denotes the development of a UI handler might not be realized by one special 307
driver on one special abstraction layer. 308

 309

 310

Figure 11 – Possible relationship between UI handlers and drivers 311

An input or output channel can be associated with a certain location (the location of the 312
device that realizes the channel), a modality, and a privacy level. These are characteristics 313
when it comes to context-aware and personalized selection of an appropriate UI handler, 314
which is supposed to be a crucial task of the UI framework. 315

The universAAL UI framework encompasses multimodal UI handlers which go beyond Web 316
browsers in a specific setup of an AAL space. 317

Finally, the analogy to the role of browsers in the web can be used for closing the discussion 318
about the understanding of UI handlers. As generally known, Web applications use HTML to 319
separate their application logic (model & control) from their user interface (view) and delegate 320
the visualization of this interface to arbitrary browsers about which they usually make no 321
assumptions. Naturally, also Web browsers can be developed with support for multimodality3; 322
however, there are two degrees of freedom in AAL spaces that are not given on the Web per 323
se: 324

 UI handlers in AAL spaces might use modern middleware to utilize I/O channels 325
distributed in an AAL space instead of being limited to only locally available drivers; 326

 Compared to the Web, the UI framework for AAL spaces might move easier beyond HTML, 327
which is not really modality- & layout-neutral, and make use of the results of activities, that 328
target the development of applications beyond the browsing of Web pages. 329

330

—————————
3 See, for example, a relevant working draft titled “WebRTC 1.0: Real-time Communication Between Browsers”

available under <http://www.w3.org/TR/webrtc/> that has been published on 21-Aug-2012 by the W3C working
group for Web Real-Time Communications <http://www.w3.org/2011/04/webrtc/>. Both standardization and
development in the area of UI handles can benefit from such related work.

XXX IEC:201X – 15 – XXX CEI:201X

4.2 Dialog Descriptions 331

The most important part of UI requests is the description of the dialog that an application is 332
asking to be held with a certain user. Such a description shall be device-, modality- and 333
layout-independent in order to guarantee a clear separation between application logic, on one 334
side, and presentation mechanisms used by the UI handlers available in a given AAL space, 335
on the other side. XForms scripts are XML documents basically formed from two parts: 336

 a set of form Controls that define the structure of the form as to be presented to the 337
addressed human user and 338

 a set of Model elements that mainly deal with the data involved in the intended interaction 339
from the viewpoint of the application. 340

The latter includes the data structures and types relevant for the form data as well as instance 341
data, such as any initial values to be used when rendering the form or hidden data. Form 342
controls are linked with the XML elements in the model part via XPATH expressions4. In this 343
way, the interpreter will know if any initial value is associated with a form control at hand and 344
which restrictions have to be applied to possible related user input. 345

The application of XForms in the universAAL UI Framework is not one-to-one due to the fact 346
that the UI framework specified in this document is part of a more complete specification on 347
application-to-application interoperability within AAL spaces, in which data sharing plays a 348
substantial role. For this reason, universAAL had to rely on the Semantic Web5 specifications 349
and used the Resource Description Framework 6 (RDF) as the de facto standard for 350
representing shared data in a domain-independent way. According to the Semantic Web 351
specifications, the domain-specific model underlying RDF data (data represented in RDF) can 352
then be specified using the Web Ontology Language7 (OWL). By relying on the combination 353
of RDF and OWL, universAAL specifications already cover many of the features assumed for 354
the model part of XForms. For example, the type system embedded in XForms Model is 355
inherently supported in a more powerful way in universAAL because of using OWL-based 356
ontologies. Therefore, the UI Framework of universAAL uses XForms specification just for the 357
purpose of specifying a dialog package that consists of the equivalents of XForms controls; 358
the data section of XForms is then replaced by RDF resources or OWL individuals originally 359
used by universAAL applications. 360

361

—————————

4 See http://www.w3.org/TR/xpath/. XPATH expressions can be used to refer to the XML elements and attributes in
an XML document.

5 http://www.w3.org/standards/semanticweb/

6 http://www.w3.org/RDF

7 http://www.w3.org/2004/OWL

XXX IEC:201X – 16 – XXX CEI:201X

The dialog package of universAAL illustrated in figure 12 suggests to embed both the form 362
controls and the form data in a single RDF resource of type “Form”: 363

 364
 365

Figure 12 – The dialog package based on the notion of a form 366

Characteristics of this package are8: 367

 The dialog package is only inspired by XForms and does not provide any one-to-one 368
implementation of the original set of form controls: 369

– Originally, there is no hierarchical relationship between the form controls in XForms; 370
the provided class hierarchy is the result of analyzing the nature of those controls. 371

– For some form controls in this package such as Sub-dialog Trigger and Media Object, 372
there is no direct counterpart in the XForms original set of form controls. 373

 There are four types of dialogs in universAAL like figure 13 shows: 374

– System menu: the main menu assumed to be provided by a specific component of the 375
UI framework, called the Dialog Manager, that provides an entry-level access to the 376
available AAL services and applications. 377

– Ordinary / standard dialog: to be used when the application wants to wait for a related 378
input event upon which the application might decide whether to finish the interaction 379
with the user or proceed to a next dialog. 380

– Message: to be used when the application does not expect any input from the user as 381
long as it can be sure the message will be delivered to the user and acknowledged by 382
him or her. 383

– Sub-dialog: to be used for constructing a hierarchy of running dialogs to ensure that 384
control is returned to the parent dialog whenever a sub-dialog is finished. 385

386

—————————
8 Please refer to API Documentation available under http://depot.universaal.org/ for a complete documentation of

this package. This API documentation exists in terms of Java API docs; the documentation of the dialog
package can be accessed by navigating to the package org.universAAL.middleware.ui.rdf.

XXX IEC:201X – 17 – XXX CEI:201X

 387

 Depending on the dialog type, a form in universAAL will consist of different combinations 388
of the following predefined groups: 389

– submits: “buttons” that finish the dialog intended by the current form should be added 390
to this group. 391

– ioControls: all other form controls, no matter if input or output controls, or subgroups or 392
even submits that trigger a sub-dialog should be added to this group. 393

– stdButtons: this group is reserved for a dialog management solution that has access to 394
all dialogs and may be willing to add standard buttons beyond the application logic to 395
reflect a system-wide behaviour. 396

Main group
of I/O controls

Standard buttons

Main group
of I/O controls

S
u
b
m
i
t
s

Main group
of I/O controls

S
u
b
m
i
t
s

Main group
of I/O controls

S
u
b
m
i
t
s

Standard buttons

Standard Dialog

System Menu Message

Subdialog

 397

Figure 13 - A possible graphical visualization of 398
the mapping between dialog types and the predefined standard groups 399

The reference implementation of the universAAL dialog package incorporates additionally the 400
following features: 401
 402
 The data part of the forms is hidden to the UI handlers so that they are relieved from error-403

checking when users provide input: UI handlers simply try to store user input provided in 404
the context of a certain form control to that control element; if this attempt fails, the UI 405
handler shall give some hint to the user using the alert message set by the application 406
with the same semantic as defined by XForms. 407

 When a UI handler finishes a dialog, the data section of the form is automatically added to 408
the response to be provided to the UI broker. 409

 Form controls can be generated by the dialog package automatically based on ontological 410
knowledge associated with the data. 411

412

XXX IEC:201X – 18 – XXX CEI:201X

4.3 The Adaptation Concept 413

The separation of the application and presentation layers based on introducing a brokerage 414
mechanism in-between makes it possible to provide an efficient and effective approach to the 415
accessibility and adaptivity challenges in the AAL domain. This approach is based on the 416
division of the adaptation tasks between the three parties in a natural way: 417

 Applications may concentrate on adaptivity in control and in content composition, for 418
example by sorting the application data to be presented to a user in a personalized and 419
situation-ware way, 420

 UI handlers may concentrate on adaptation in rendering by taking the characteristics of 421
the used channels into account, and 422

 The brokerage mechanism residing in-between may concentrate on the selection of the 423
right UI handler for a given user in a given situation. 424

All the three layers can benefit from the universAAL framework for supporting adaptivity, both 425
in terms of context-awareness and personalization, by subscribing for relevant contextual data 426
and / or fetching such data. 427

428

XXX IEC:201X – 19 – XXX CEI:201X

4.3.1 Responsibilities of Applications 429

Applications can prepare the content to be presented to the user in an adaptive way before 430
adding it to a form object. Behaviour related to preparing the content in a personalized and 431
situation-aware way is a choice that shall be made by the application developer and the UI 432
framework cannot influence this behaviour largely. Here, the expectation is that the platform 433
as a whole provides means for supporting adaptivity. The universAAL platform provides such 434
means that are not subject to further discussion in this specification and are assumed to be 435
replaceable by another platform-specific alternative. Figure 14 specifies a set of components 436
on which the universAAL framework for supporting adaptivity consist of. 437

Special-
purpose

Reasoners

Special-
purpose

Reasoners

General-
purpose

Reasoners

General-
purpose

Reasoners

General-
purpose

(rule-based)
Reasoners

Context History
Entrepôt

Facts

SPARQL
Engine

Special-
purpose

Reasoners

Profiling

 438

Figure 14 – The universAAL framework for supporting adaptivity, which builds on top of 439
the universAAL context and service buses 440

Applications shall contribute to the adaptivity of the UI framework as a whole. This is forced 441
by the framework by making it mandatory that applications provide the following data items 442
when making a UI request9: 443

 Addressed User: the specific user whom the application wants to reach. 444

 The dialog priority: one of none, low, middle, high, or full; it will be ignored if no other 445
dialog is running at the time of receiving the UI Request that involved the same user as 446
the one addressed; otherwise, it will be used to determine whether the running dialog 447
should be interrupted; if the running dialog shouldn’t be interrupted, the request will be put 448
in a queue sorted according to the dialog priority and time of arrival. 449

 The content language: a value of type XML Schema. 450

 The privacy level of the content: one of insensible, known_people_only, intimates_only, 451
home_mates_only, or personal. 452

Applications shall also contribute to the rendering phase by providing alternative versions of 453
any media objects used as content in the intended dialog. For this purpose, they shall rely on 454
a specific component of the universAAL UI framework, known as the Resource Manager (RM), 455
by: 456

a) providing media objects with a special URI and meta information as resources to the RM. 457

b) using specific URIs for referring to such media objects in their dialog descriptions, and 458

c) providing the RM with several different versions of the media objects, each for a specific 459
runtime context. 460

461

—————————
9 See the detailed specification of org.universAAL.middleware.ui.UIRequest provides as part of the API

specification under http://depot.universaal.org.

XXX IEC:201X – 20 – XXX CEI:201X

4.3.2 Responsibilities of UI handlers 462

As components that utilize certain output channels for holding dialogs with human users, UI 463
handlers shall adapt the modality- and layout-neutral description of dialogs to the capabilities 464
of the devices that realize the utilized output channels. For performing such adaptation these 465
hints shall be as followed: 466

 The profiles of the devices that realize the output channels should be stored in the 467
database of shared facts as indicated in footnote 9 (see in the same footnote also the 468
component called Profiling); The developer of a UI handler may also rely on the API of the 469
device driver used. 470

 The adaptation to the channel capabilities will necessitate transformations (e.g., text to 471
speech) and layout-related decisions (e.g., the order of going through the dialog elements 472
if a “one-dimensional” device such as a loudspeaker is being used for rendering the 473
dialog). This specification makes no assumptions about the relationship of UI handlers to 474
possible related transformation and rendering tools. From the perspective of the whole 475
universAAL platform, it is recommended to decouple such auxiliary software and utilize 476
their capabilities as shared services over the universAAL service bus. 477

 The adaptation of media objects to the capabilities of the used devices needs the help of 478
application developers or third parties. If the application developer contributes and the 479
dialog description contains references to the Resource Manager (see the recommendation 480
to application developers in the previous section), the mandated UI handler will have to 481
retrieve a best-match version of the referenced media object from the Resource Manager 482
by providing appropriate parameters about the runtime context (see the specification of 483
the RM in Section 4.4.3). 484

485

XXX IEC:201X – 21 – XXX CEI:201X

Similar to the case of applications, UI handlers shall contribute to the adaptivity of the UI 486
framework as a whole. This is forced by making it mandatory that UI handlers shall provide 487
their profiles to the brokerage layer when registering to that layer. The profile of a UI handler 488
shall include the following information items: 489

 Supported channels: each channel shall be described by the following properties, which 490
can be extracted from the profile of the device that realizes the channel and is utilized by 491
the UI handler: 492

– Channel type: input or output 493

– Location where the channel is available: will depend on the location of the 494
corresponding device 495

– Interaction modality supported through the channel: currently, one of GUI, Speech, or 496
Gesture 497

– Channel privacy level: private, public, or both; e.g., a headphone provides a private 498
channel, 499

– but the loudspeaker of a TV a public channel, and the speaker of a phone provides 500
both 501

– Modality-specific tuning capabilities: e.g., the volume range 502

 Supported languages: a list of values of type XML 503

 Appropriateness for certain impairments: UI handlers might be specialists in interaction 504
with certain types of users having certain types of impairments: 505

 506

 507

Figure 15 – A model for describing access impairments 508

509

XXX IEC:201X – 22 – XXX CEI:201X

4.3.3 Responsibilities on the brokerage layer 510

AAL spaces are open spaces; applications and UI handlers are “third-party” components that 511
can be plugged into AAL spaces as desired by the users. The extent of adaptivity in the 512
behaviour of these components is a function of the design decisions made by their developers. 513
The level of adaptivity in these components will play a decisive role in determining their 514
market shares. 515

In terms of the whole system, AAL spaces can still achieve a certain level of adaptivity even 516
independently from the adaptivity level supported by the concrete set of applications and UI 517
handlers running in the space. The prerequisite for this is the contribution of applications and 518
UI handlers to the limited extent. Given this contribution, the following behaviour can be 519
realized that is assumed to be essential for AAL spaces of future: 520

 enable natural interaction with exciting user experience by selecting a UI handler, which 521
utilizes those I/O channels that are the best match for interaction with a certain user in a 522
given situation 523

 during the time a certain dialog is being held with the addressed user, instruct the UI 524
handler to adapt itself to the changes in the context as far as the capabilities of the UI 525
handler allow to cope with the changes; otherwise, transfer the remaining part of the 526
dialog from that UI handler to a new one that is a better match for the changes in the user 527
context. Examples for the effects that can be achieved are: 528

– adapt within the scope of modality-specific tuning capabilities of the used channels, 529
e.g., perform a speech-based interaction a little bit louder because the situation with 530
the background noise worsens 531

– switch to another channel due to the change of the user location and achieve “follow 532
me” 533

– switch to another channel with a different privacy level, e.g., when the personal content 534
in the dialog should not be disclosed to someone that enters the same location as the 535
interacting user 536

– suspend the current dialog and start with another dialog with a higher priority 537

– continue with a previously suspended dialog because the interrupting dialog finished or 538
because the user instructs to do so 539

– stop all interactions with the user because something else is attracting the user’s 540
attention 541

542

XXX IEC:201X – 23 – XXX CEI:201X

For selecting the most appropriate UI handler, the brokerage layer shall match the current 543
state of a set of relevant parameters against the profile of the available UI handlers, each time 544
that a UI request is received from the application layer. The corresponding set of parameters 545
can be determined the following way: 546

 use the content language indicated by the application for comparing it against the set of 547
languages supported by the UI handlers available in the current AAL space 548

 fetch from the user’s context 10 : any impairments that the user addressed in the UI 549
request might have and compare it against the appropriateness for access impairments 550
claimed by the available UI handlers 551

 fetch from the user’s context: the current location of the user addressed in the UI request 552
and use it for matching against the location of the output channels utilized by a given UI 553
handler 554

 fetch from the user’s context: the modality recommended in the current situation for the 555
user addressed in the UI request and match it against the modalities supported by the 556
output channels utilized by a given UI handler 11 557

 for the modality recommended, fetch from the user’s context: the modality-specific tuning 558
parameters preferred by the user addressed in the UI request and use it for matching 559
against the modality-specific tuning capabilities of the channels to use 560

 fetch from the user’s context: the currently highest privacy level that a dialog is allowed to 561
possess in order to still be held using public channels and compare it with the privacy 562
level provided by the application in order to determine the privacy level required from the 563
output channel to use 12 564

 565

Figure 16 – Summary of the adaptation parameters 566

—————————

10 Assumes that the user model includes the corresponding info. In universAAL this model exists in terms of an
ontology, and all info describing user context is assumed to be available in the “facts database”, which is part of
the universAAL framework for supporting adaptivity; see also footnote 9

11 In universAAL, a rule determines this value. One of the general-purpose reasoners in the universAAL framework
for supporting adaptivity (more specifically, the so-called Situation Reasoner that works based on SPARQL)
monitors the changes in the context, and based on those changes, re-evaluates the affected rules. The evaluation
of these rules might lead to the construction of a new fact that is then fed into the “fact database”. This always-
running background process ensures that a simple fetch operation is enough for, say, retrieving the most up-to-
date recommendation for the modality to use in the interaction with a given user.

12 In universAAL, a rule determines this value as in case of the recommended modality.

XXX IEC:201X – 24 – XXX CEI:201X

4.4 Provisions of the UI Framework 567

The source of the parameters needed for selecting a UI handler and the logic of matching 568
those parameters against the corresponding capabilities of the UI handlers have been 569
specified for each information item in the profiles of UI handlers separately. It is expected that 570
the brokerage layer fetches in a first operation all of the parameters and gets ready for the 571
next step which is to go through all of the profiles registered by the available UI handlers and 572
match the fetched parameters against those profiles while ranking them. In the end of this 573
process, the UI handler whose profile ranked. There are three components as integral parts of 574
the universAAL UI framework: 575

 576
a) The UI Bus, which provides a message brokerage mechanism that facilitates the 577

independence of the applications and UI handlers from each other 578

b) The Dialog Manager, which assists the UI Bus in the management of dialogs in order to 579
achieve some of the desired adaptation effects listed as examples in Section 4.3.3. 580

c) The Resource Manager already mentioned in sections 4.3.1 and 4.3.2. 581

 582

Figure 17 – The components comprising the universAAL UI framework 583

584

XXX IEC:201X – 25 – XXX CEI:201X

4.4.1 The UI Bus and its brokerage protocols 585

In general, messaging brokers can be abstracted as virtual communication buses, or short 586
buses. This is also the abstraction used by the universAAL platform; therefore, the broker in 587
the universAAL UI framework is called the UI Bus, which is mandated to facilitate the 588
interaction between applications and UI handlers. 589

A bus may be realized in a centralized way so that only one single instance of the bus exists 590
in a whole system; if the UI Bus is realized in that way, there would be a 1:1 relationship 591
between the term UI Bus and the singleton object that realizes the bus. Alternatively, a bus 592
can be realized in a distributed way with one instance per runtime environment so that 593
components that want to connect to the bus can do so by accessing the local instance of the 594
bus and use its API natively. In that case, the different instances of the same bus running in a 595
distributed way within different runtime environments shall find each other and cooperate in a 596
way that the distribution and possible heterogeneity of the different runtime environments can 597
be overcome. If so, a message posted by a component to the bus instance that exists in the 598
same runtime environment may reach another component running in another runtime 599
environment, when necessary. Through such cooperation between the different instances of 600
the same bus, each instance will be perceived by the components locally attached to it as the 601
footprint of a single global bus. If the UI Bus is realized in this way, then the term UI Bus 602
would refer to the logically global bus that emerges through the cooperation between the 603
different instances of the bus distributed among different runtime environments13. 604

Buses can operate either event-based or call-based. Event-based buses support the 605
communication pattern known as publish-subscribe, whereas call-based buses realize the 606
request-response communication pattern. The UI Bus in the universAAL UI framework 607
operates call-based and consequently supports the request-response communication pattern. 608
As a result, the main messages posted to the UI Bus or forwarded by the UI Bus to its 609
members are called UI Request and UI Response, respectively. 610

 611

Figure 18 – The main messages exchanged on the UI Bus 612

From the viewpoint of an application, a UI Request consists of a form object as described in 613
Section 4.2. and the set of parameters described in Section 4.3.1. The resulting object model 614
can be summarized as follows: 615

—————————

13 The reference implementation of the UI Bus in the universAAL platform is based on the second paradigm as part
of a distributed middleware approach that consists of two other buses, namely the context and service buses, as
indicated in footnote 2

XXX IEC:201X – 26 – XXX CEI:201X

 616

 617

Figure 19 – The notion of a UI request from the view of applications 618

When an application posts a UI Request to the UI Bus, the latter asks the Dialog Manager to 619
(1) make a decision about handling the request in the current situation (see Section 4.4.2), 620
and – if appropriate to be handled immediately – (2) augment the request with up-to-date info 621
from the user context according to the logic described in Section 4.3.3. As a result, the UI 622
Request will be enriched by a set of parameters, such as user’s possible access impairment, 623
recommended presentation modality for the addressed user in her/his current situation, 624
alternative presentation modality recommendation, presentation location (where the user finds 625
himself currently), presentation privacy, and modality-specific user preferences. The enriched 626
UI Request is then matched against the profiles of registered UI handlers (see the 627
enumeration in Section 4.3.2 for the content of these profiles) in order to choose the most 628
appropriate UI handler. 629

Application UI Bus Dialog Manager UI Handler

Check Request

priority check

enrichmenttrue + enriched request

match making

user interaction

UI Response

UI Request

enriched UI Request

UI Response

 630

Figure 20 – Overview of the sequence of actions when the priority check is positive 631

632

XXX IEC:201X – 27 – XXX CEI:201X

The following rules are used during matchmaking in order to assign scores to the candidate UI 633
handlers before choosing the one with the highest score: 634

 Omit candidates not able to present a dialog in the required presentation location. 635

 If the usage of private channels is required by the enriched UI Request, omit candidates 636
not offering this capability. 637

 If the last UI handler that was interacting with the user is among the remaining candidates, 638
take that one as the best match. 639

 If accessibility support is mandatory, omit candidates not appropriate; otherwise assign 640
higher scores to candidates offering appropriate accessibility support. 641

 Omit candidates that support neither the recommended presentation modality nor the 642
alternative modality; then, assign higher scores to candidates that support the 643
recommended presentation modality rather than supporting the alternative one. 644

 Assign higher scores to candidates that provide a better match for the modality-specific 645
user preferences. 646

 At any time after omitting not appropriate UI handlers from the list of candidates, if the list 647
of remaining candidates becomes empty, then try to find a compromise for the conflicting 648
situation; e.g., if the enriched UI Request indicates that only private channels shall be 649
used but no UI handler offers this capability in user’s location, then the user shall be 650
asked if s/he would change to a location with available private channels, or the info should 651
be presented in the same location using public channels, or the interaction is postponed to 652
a later time. By default – e.g., when there is no way to ask the user for resolving the 653
conflicting situation – the UI Bus will ask the Dialog Manager to preserve the dialog for a 654
later time. 655

656

XXX IEC:201X – 28 – XXX CEI:201X

If any of the above parameters from the enriched UI Request changes during the time after 657
mandating a UI handler to perform the corresponding dialog with the user and before the UI 658
handler reports that the dialog has been finished, the Dialog Manager resends the enriched UI 659
Request with its updates to the UI Bus and requests to redo the matchmaking. Examples of 660
such changes are: 661

 If during interaction with a UI handler the user changes the location from one room to 662
another, the Dialog Manager will have to update the presentation location in the enriched 663
UI Request 664

 If during interaction with a UI handler a third person enters the presentation location who 665
is in conflict with the privacy level of the presented content, the Dialog Manager will have 666
to update the required channel privacy 667

 If according to some user preference the loudness of the speakers used for interacting 668
with the user should change depending on the loudness of the background noise, and 669
during speech-based interaction with a UI handler, the background noise changes 670
significantly, the Dialog Manager will have to update the modality-specific parameter 671
“volume” 672

After receiving the updated UI Request, the UI Bus will redo the matchmaking with the profiles 673
of available UI handlers; if as result the newly matched UI handler is the same as the UI 674
handler matched previously, this UI handler will be notified about the change of the enriched 675
UI Request in order to adapt its behaviour to the changes, e.g. by transferring the rest of the 676
interaction to more appropriate channels accessible to it (channels in the new location of the 677
user or private channels in the same location) or by adapting the modality-specific rendering 678
parameters (e.g., speech output becomes louder). If however the new UI handler is different 679
from the old one, the old UI handler will be asked to cut the dialog and return the form data 680
with all intermediate user input gathered so far, then the enriched UI Request updated by the 681
Dialog Manager will be re-updated by the UI Bus in order to include the changes in the form 682
data, and finally the new UI handler will be mandated to handle the dialog with the user. 683

 684

Figure 21 – The case of switching to a new UI handler when handling changes in the 685
context 686

687

XXX IEC:201X – 29 – XXX CEI:201X

Beside this main protocol for forwarding UI Requests from applications to UI handlers, the UI 688
Bus supports the following additional protocols: 689

1. Finishing a dialog 690

When a UI handler finishes a dialog with the user, it constructs a UI Response by providing 691
the following set of data and hands it over to the UI Bus: 692

 The user who provided the response 693

 The location where the input was provided 694

 The ID of the dialog finished 695

 The final state of the form data as updated during the dialog with the user 696

 The ID of the parent dialog, if the finished dialog was a sub-dialog of another dialog 697
running previously (see the discussion of sub-dialogs further below) 698

 The ID of the “Submit” object that caused the dialog to finish (see Section 4.2) 699

 A Flag indicating if the above “Submit” object actually does not finish the dialog but 700
simply suspends it as a result of activating either a “SubdialogTrigger” (see both the 701
description of the dialog package in Section 4.2 and the discussion of sub-dialogs 702
further below) or a “standard button” (see both the description of the dialog package in 703
Section 4.2 and the discussion of the standard buttons in Section 4.4.2) 704

Upon receiving a UI Response, the UI Bus forwards it to the application that had made the 705
original UI Request and notifies the Dialog Manager that a dialog with a certain ID has 706
finished or been suspended. See Section 4.4.2 for the reaction of the Dialog Manager to this 707
notification. 708

2. Aborting a dialog 709

There are three ways for aborting a dialog: (1) the user may decide to abort a running dialog 710
using “Submit” objects provided by the application itself; in that case, the abort action actually 711
falls into the normal category of “finishing a dialog” as discussed in the previous bullet; (2) the 712
user may decide to abort a suspended dialog using a standard dialog designed by the Dialog 713
Manager – see Section 4.4.2; in that case, the Dialog Manager will ask the UI Bus to inform 714
the corresponding application about this action of the user; (3) the application itself decides to 715
cancel its UI Request (e.g., because a deadline for the expected user input was missed); in 716
that case, the application shall also provide a human readable explanation for this action and 717
wait until the UI Bus either confirms the abort or informs that the dialog has finished normally. 718

Upon receiving such an abort request, the UI Bus checks if the corresponding dialog is 719
running; if yes, the request to abort will be forwarded to the UI handler in charge of handling 720
the dialog. The UI handler is expected to communicate this situation with the user while 721
referring to the reasons provided by the application. The result of the user decision will then 722
be communicated both to the application and to the Dialog Manager. If however the 723
application is asking to abort a dialog that had been suspended for whatever reason and 724
hence is not running, then only the Dialog Manager is informed by the UI Bus to remove the 725
dialog from its list of suspended dialogs and not reschedule it for later resumption. 726

727

XXX IEC:201X – 30 – XXX CEI:201X

3. Resumption of a previously suspended dialog 728

A dialog can be suspended due to four reasons (in that case, the Dialog Manager will put the 729
dialog in a user-specific queue of dialogs waiting for resumption): (1) at the time when the 730
application made its UI Request, the addressed user was already involved in another running 731
dialog with the same or higher priority; (2) a running dialog might be suspended because a 732
dialog with a higher priority has to be pushed into the foreground; in that case, the UI handler 733
in charge of the running dialog will be asked to cut the dialog and return the form data with all 734
intermediate user input gathered so far in order to forward it to the Dialog Manager for 735
suspension; (3) when the user activates a “SubdialogTrigger” in a running dialog, the latter 736
will be suspended; (4) when a user activates a “standard button” in order to switch to a 737
standard dialog provided by the Dialog Manager; such standard buttons are added to 738
application dialogs by the Dialog Manager during the enrichment of UI Requests; activation of 739
these buttons leads to the suspension of the running dialog. 740

Resumption of a previously suspended dialog may occur automatically after a dialog with no 741
parent dialog finishes. In that case, the notification sent by the UI Bus to the Dialog Manager 742
causes that the latter checks the user-specific queue of dialogs waiting for resumption and 743
picks the dialog with the highest priority for resumption; in case that there are several dialogs 744
with this priority, the oldest one from among them will be selected. If the queue is empty, then 745
the default standard dialog (the system “main menu”) will be selected. At this time, the 746
corresponding UI Request will be updated with data from the user context and the UI Bus will 747
be asked to start with a new matchmaking process for mandating an appropriate UI handler to 748
resume with that UI Request. 749

However, if the finished dialog was a sub-dialog, the Dialog Manager won’t execute the above 750
procedure for resumption; rather, the system expects that the application that had made the 751
corresponding UI Request will process the input data provided by the user and incorporates 752
any resulted changes in the data associated with the parent dialog and ask the UI Bus to 753
resume with the parent dialog. At this stage, the UI Bus restarts the whole process with the 754
enrichment of the UI Request by the Dialog Manager with up-to-date data from user context, 755
matchmaking, and mandating the most appropriate UI handler (usually the same UI handler 756
that just finished thee sub-dialog). 757

The need to resume a suspended dialog may also arise when in the context of a standard 758
dialog provided by the Dialog Manager, the user explicitly chooses a waiting dialog for 759
resumption. Such an action finishes the corresponding standard dialog so that the Dialog 760
Manager will then resume exactly the dialog chosen by the user instead of following its own 761
logic for the priority-based selection of the next dialog. 762

763

XXX IEC:201X – 31 – XXX CEI:201X

4. Handling sub-dialogs 764

Sub-dialogs are usually used for structuring complex dialogs in a more neat way. In the usual 765
case of GUI-based interaction, a sub-dialog is usually rendered in a pop-up window when 766
some action of the user activates the sub-dialog. Then, usually the user cannot return to the 767
parent dialog before the sub-dialog is finished. A reason for this behaviour is that the user 768
input in the context of the sub-dialog may affect the form data in the parent dialog so that the 769
parent dialog may need to be re-rendered. A typical example for such a situation is given, 770
when the parent dialog includes only a summary of more complex data related to the current 771
dialog and hence has to embed a “SubdialogTrigger” (as it is called in the dialog package of 772
the universAAL UI framework described in Section 4.2) in the current form in order to provide 773
the user with the possibility to view all the related details; any changes to these details can 774
usually be made to the detail data only in the context of such sub-dialogs. 775

When in the context of a running dialog the user activates a “SubdialogTrigger”, the UI 776
handler shall construct a UI Response as if the current dialog has finished, and set in this 777
response a flag indicating that the submission has been caused by a SubdialogTrigger. The 778
standard “submission ID” in the response will then be the ID of the concrete 779
“SubdialogTrigger”. Then the UI handler can assume that most probably it will be mandated 780
by the UI Bus to perform the sub-dialog that the application is assumed to send in immediate 781
reaction to the UI Response and use some interaction “trick” until the situation is clarified. 782
When the application submits a UI Request that is in reaction to such a UI Response for 783
activating a sub-dialog, it has to include the ID of the parent dialog in the corresponding UI 784
Request. 785

When a sub-dialog finishes, the UI handler shall construct a UI Response in which the ID of 786
the parent dialog is returned back to the application so that the latter can uniquely identify 787
which original dialog is expected to be resumed. 788

789

XXX IEC:201X – 32 – XXX CEI:201X

4.4.2 The dialog manager and its role in assisting the UI Bus 790

The Dialog Manager (DM) plays multiple roles in the universAAL UI framework for AAL spaces. 791
It (1) represents the whole system by providing different flavours of system menus and 792
standard dialogs, (2) assists the UI Bus by being responsible for the incorporation of user 793
context in analyzing the interaction situations, (3) assists the UI Bus also by providing a 794
persistent mechanism for user-specific dialog management, (4) handles user instructions to 795
the AAL space as a whole, (5) provides a mechanism for users to edit their UI related 796
preferences as a specific standard dialog, and (6) is finally responsible for offering a unified 797
view of all user services available in the AAL space as an alternative to system menus and a 798
method to search for specific services. Due to its roles (1), (4), (5), and (6), it is logically also 799
playing the role of an application that creates own UI Requests and sends them to the UI Bus 800
for being brokered to an appropriate UI handler. 801

Many of the above features of the Dialog Manager have been already specified in the context 802
of previous sections in this document. Therefore, this section only provides complementary 803
info needed to specify the tasks of the Dialog Manager in more details: 804

1. Dialog Management 805

The DM manages parallel dialogs for several users based on priority queues of published 806
dialogs and takes care that only one dialog is presented to the user at each point in time 807
based on the priority of the UI requests received from the application layer. Before brokering 808
UI requests to UI handlers, the UI Bus asks the DM to check if the UI request should be 809
handled immediately or wait until a later time; if the result of this check is negative, the 810
corresponding UI request will be queued and the UI framework does not undertake any 811
additional action. Only if the result of the check is positive, the enrichment of the UI request 812
with relevant up-to-date data from the user’s context will be done immediately; otherwise, this 813
step will be done at the time of resumption (see also the previous section). 814

One of the important aspects of the enrichment is the addition of “standard buttons” to the 815
form object contained in UI requests. They make it possible for the user to view and 816
manipulate the queue of waiting UI requests or switch to the “system main menu” (more on 817
that further below). An important remark about the “system main menu” is that it is the first 818
dialog presented to users as soon as they take the initiative to start interacting with an AAL 819
space by accessing a desired UI handler. In such cases, the UI handler will inform the UI Bus 820
that in the absence of any history for a specific user, s/he has started actively to use it for 821
interacting with the AAL space. The reaction of the UI Bus will be to ask the DM for the 822
default dialog, which is the “system main menu” as assumed by the DM. 823

In addition to the user-specific queue of waiting dialogs, the DM remembers the currently 824
running dialog for each user separately. This way, it can handle all the cases of completion, 825
aborting, suspending and resuming dialogs correctly and in accordance to the protocols 826
described in the previous section. 827

828

XXX IEC:201X – 33 – XXX CEI:201X

2. Standard Dialogs 829

Recurring system-wide and application-independent dialogs and dialogs related to the act of 830
managing dialogs are called standard dialogs in the terminology of the universAAL UI 831
framework for AAL spaces. The “standard buttons” – referred to previously several times – are 832
expected to provide access to these kinds of dialogs. 833

Currently, the following are the only system-wide dialogs specified in this framework: 834

 The “system main menu” that provides for navigation through a specific organization of 835
user services available in the AAL space based on user- and language-specific 836
configuration files 837

 A dialog for searching among all the user services available in the AAL space that can be 838
accessed by a specific user in a free form, beyond the “system main menu”, which is a 839
pre-configured organization of them that might not be comprehensive enough 840
Searching for services usually occurs in the context of a need; hence, such a free search 841
might be used for directly articulating a need, such as “turn on the light on the wall behind 842
me!” This kind of “search” can actually be classified as an instruction to the AAL space, 843
which is usually equivalent to a shortcut to some available service that otherwise would be 844
found by navigating in menus. As a result, the DM is also in charge of resolving such 845
instructions as far as possible. 846

 A dialog for viewing and manipulating UI-specific user preferences 847

In addition, currently supported dialogs related to the second category of standard dialogs, 848
namely the act of managing dialogs, include two similar but separated dialogs for browsing, 849
resumption or aborting UI requests that are waiting in the user-specific queue: One of them is 850
specific to pending “messages” and the second one for all the other pending dialogs (see the 851
list of dialog types in Section 4.2). 852

4.4.3 The Resource Manager 853

The Resource Manager (RM) is mainly responsible for managing media objects as resources 854
for UI Handlers. Applications can refer to such resources in their UI requests by using URIs; 855
this “presentation URI” is mapped by the RM to a concrete URI that can be accessed directly 856
by the UI Handler. Both application vendors and third parties can then provide the RM with 857
several different versions of the media objects, each for a specific runtime context. The RM 858
stores persistently the resources and their URI and meta information, and may provide them 859
via well-known protocols (e.g. http) to UI Handlers. 860

Application developers are expected to use the RM the following way: 861

a) Providing resources with their presentation URI to the RM, together with meta information, 862
such as modality and language. The resources and the information are stored persistently 863
by the RM. 864

b) In the related UI requests, refer to the corresponding resources by using their presentation 865
URIs. 866

UI Handlers are expected to use the RM in the following way: 867

a) Passing the UI request and a set of parameters describing the context of rendering the 868
dialog, such as the currently used modality and language, to the RM which transforms all 869
presentation URIs in the UI request to concrete URIs according to the managed resources. 870

b) When presenting the transformed UI request, the resources may be retrieved from the RM 871
using well-known protocols, like http. However, the concrete URI may also link to a 872
location not handled by the RM. 873

XXX IEC:201X – 34 – XXX CEI:201X

Annex A (informative) 874

A.1 Use Case: Supporting rich human computer interaction 875

Title RUC#1: Supporting rich human computer interaction

Artefact/

Concept

Users are able to interact with the AAL system with different means (gesture, voice, touch,
etc.) even simultaneously. The system is able to choose the best communication means
according to the preferences of the user or the context of use (i.e. the location, the available
devices, type of impairment, etc.).

Rationale The user interface for the AAL service user is a critical issue that is related to their
acceptance of the system. It is especially critical in complex systems like AAL systems.
UniversAAL enables the creation of a rich variety of different configuration and
personalization options, where not only the background colour can be personalized but for
instance, how many interaction mechanisms the user wants to/can use simultaneously, and
by using which devices located across the home, depending on the users’ contexts. The final
result of rich human computer interaction will be that users receive feedback seamlessly by
the environment (with the minimum effort for them) and also can easily provide information
into the system, or interact with it in the better and more natural way for them.

Examples of
usage

Example application: “Nutritional Advisor” (multimodality and high configurability).

The AAL service user is able to initially configure his/her user preferences related to
nutritional aspects. These preferences are stored in a platform component dealing with the
user profile. That information is used by the "User Interaction Framework" to apply its
intelligence. The platform offers different ways to allow inputs of information into the system:
Wizard based using window based forms (graphical oriented), wizard based using speech
generation and voice recognition (voice oriented), or a combination of graphical interface,
gesture and voice recognition (multimodal).

Example application: “Nutritional Advisor” (Adaptation to context and preferences).

When the AAL service user makes breakfast, the system suggests the shopping list for the
current week on the TV in the kitchen. It catches the users’ attention by making a sound or
just blinking lights at the display. The system knows from the user profile that the last time
he/she shopped was three days ago. The AAL service user may confirm that he/she has
read the message using different ways such as touch a button on the screen, saying “Thank
you”, shaking an object. The system may communicate to the user recommendations and
advice from the nutritionist. Depending on the user profile and user preferences the system
displays the information using the appropriate interaction mechanism. For instance, when
the user enters the living room a digital photo frame displays the message “Don’t forget to
drink water. Today it’s going to be over 35ºC”.

A second example: certain messages might be private. The system can decide to use a
more private modality to forward the message to the AAL service user, i.e. if the user listens
to music with earphones, the system uses that specific mechanism to communicate that
specific message.

A third example: the AAL service user may look at a display in the kitchen for a certain
recipe. Then the user moves to the living room in order to take a book from the shelf. The
system is aware of that movement and might display the same recipe on the TV placed in
the living room. This “follow me” scenario is supported by the underlying capacities of the
platform.

Components Middleware; Domotics/WSN commons, UI Framework; Context Management; User
model/Profiling

Benefits for
stakeholders

 AAL service user -> End users -> Assisted Person and End users -> care personnel:
by enjoying a new experience in dealing with technology helping them in daily life.

 Developers: a developer may select which interaction modalities to charge into the
system without the need of changing the development. It is also possible to
develop alternatives. It is open to develop own interaction modalities or repeat
existing ones in a way that better fits with your requirements.

A.2 Use Case: Healthy Lifestyle Service Package Use Case (universAAL) 876

Title RUC#2: Healthy Lifestyle Service Package Use Case

Artefact/

Concept

The AAL user can decide to use different interaction channels and/or different flavours of the
same interaction channel completely separately from the functionalities provided by different
applications. He can decide separately on the most preferred way of interaction (graphical,

XXX IEC:201X – 35 – XXX CEI:201X

Title RUC#2: Healthy Lifestyle Service Package Use Case

voice, gesture, etc) and most convenient applications.

Rationale The AAL service user is supervised by a Telemonitoring system which controls his health
and diet status. The "Healthy Lifestyle Service Package" is provided by an AAL service
provider. It consists of sensors installed across the house to monitor the actions related to
cooking, sedentary life, level of activity, etc. Health care personnel supervises the ongoing
care of the AAL service user by sending advice and questions about the health and vital
signs.

The AAL service user signs a service level agreement with an AAL service provider. The
AAL service provider installs the software and sensors in the home of the AAL service user
and also delivers supporting devices. The data collected from the sensors and other privacy
data is only evaluated by health care personnel. By using non-intrusive mechanisms the
health care personnel provides recommendations related to the activities of the AAL service
user. Messages, e.g. shopping lists, are sent which have to be confirmed by the AAL
service user with a touch-sensitive screen located in the kitchen. If it is detected that audio
interaction is more appropriate for the AAL service user then the interaction can change to a
different interaction mode, e.g. a graphical user interface. The AAL service user may also
use voice and speak commands instead of touch screens.

Examples of
usage

Example application:

Location sensors ensure to locate the AAL service user around the house. Appropriate
interaction modality is used or just the user can switch the output location from the previous
screen to the screen in the vicinity thus enabling the "follow me" scenario.

Components

Benefits for
stakeholders

When the AAL service user is familiar with the "Healthy Lifestyle Service Package", the AAL
service package can be enhanced by new functionalities, e.g. an application that motivates
not to spend so much time watching TV at home, instead to be more active. The new
application is installed by the AAL service provider and makes use of the graphical user
interface. Since the AAL system's framework enables decoupling of the application and the
presentation components, the AAL service user can add or remove applications separately
without being concerned that some beneficial applications are lost if a different interface is
chosen.

 877

Bibliography 878

The UI framework specified in this document is the result of work in the following EU research 879
projects: 880

1 The EU-FP6 integrated project PERSONA with Grant Agreement no. 045459 that was 881
running from 1-Jan-2007 to 31-Oct-2010. The following paper summarizes the related 882
results from PERSONA: 883
 884
Tazari, Mohammad-Reza: An Open Distributed Framework for Adaptive User Interaction in 885
Ambient Intelligence. In: Ruyter, Boris de (Ed.) ; Wichert, Reiner (Ed.) ; Keyson, David V. 886
(Ed.) ; Markopoulos, Panos (Ed.) ; Streitz, Norbert (Ed.) ; Divitini, Monica (Ed.) ; 887
Georgantas, Nikolaos (Ed.) ; Gomez, Antonio Mana (Ed.): Ambient Intelligence : AmI 2010. 888
Berlin; Heidelberg; New York : Springer, 2010, pp. 227-238. (Lecture Notes in Computer 889
Science (LNCS) 6439). 890
 891

2 The EU-FP7 integrated project universAAL <www.universaal.org> with Grant Agreement 892
no. 247950 that started on 1-Feb-2010 and is planned to finish by 31-Jan-2014. 893
universAAL adopted the PERSONA UI Framework and enhanced it further as specified in 894
this document. 895

To be completed later. 896

