The universAAL UI Framework

saied.tazari@igd.fraunhofer.de
Note

the abbreviation “UI” throughout this presentation stands for

User Interaction

and not for *user interface*
Outline

- Rationale behind the universAAL Approach
- The universAAL Approach
- Resources
RATIONALE
From HCI to HEI!

- **HCI**: the traditional Human-Computer Interaction
 - the interaction is usually assumed to be bound to one single computer and its peripherals.

- **HEI**: Human-Environment Interaction
 - Implicit interaction
 - Explicit interaction
Breaking out of the Virtual Realm into the Physical World

T. Berners-Lee, J. Hendler, O. Lassila: The Semantic Web

Diagram:

Channel

bridges among

Physical World

Virtual Realm

needs bridging among

Smart Environments

the science / art of creating

AmI

centered on

Humans
The Importance of Explicit User Interaction (I)

- Explicit UI over I/O channels long enough in the shadow of “implicit interaction” over sensing channels in AmI

Diagram:
- I/O Channels
- Sensing Channels
- Explicit interaction
- Implicit interaction
Progresses that help explicit UI become more important

- proliferation of (multi-)touch sensing, HD displays, & displays embedded in all possible devices
- new interaction forms supported by special devices with specific sensors
- qualitative progresses in
 - speech recognition
 - natural language processing
 - gesture recognition
- socio-political pressure on “accessibility for all”
I/O Devices in emerging Smart Homes

- living room TV
- sleeping room TV
- a display in the entrance
- a display integrated in the fridge door
- mirrors capable of becoming displays
- microphone arrays installed in all rooms
- loudspeakers installed in all rooms
- phones providing displays, microphones, (loud)speakers
- hi-fi providing loudspeakers

➢ An infrastructure of available I/O channels
Smart Environments as Open Distributed Systems

Smart Environment

best realized as

The Web

Self-organizing System

evolvable
dynamic
always working
competitive
surprising

is a

Open Distributed System

facilitates independent development of

Software Artifacts

poses concern

handling distribution & heterogeneity

"Error 404 Not Found"

no total consistency

user experience
Separating applications from the management of the I/O channels

(“UI Handler” is the term used for the managers of the I/O channels)
UIM Derived Goals

- We need to create a UI model for
 - describing user interfaces in a modality-neutral manner
 - performing personalized and context-aware adaptation
- Intelligent (personalized and context-aware) brokerage between applications and UI Handlers (I/O channel managers)
- Introduce a framework for
 - modality fusion when capturing user input from different input channels
 - modality fission when using different output channels for presenting system output to human users
APPROACH
UI Protocol

user interaction communication needs

node\(_1\)

UI handler
handling request
responding

user interaction handling requests

UI caller
requesting
processing response

publisher
publishing event

processing response
requesting
caller
calling

events
handling event
subscriber

calls
handling request
responding
callee

is a special case of

general inter-component communication needs
Approach

UI HANDLERS & THE MANAGEMENT OF I/O CHANNELS
Channel Binding

I/O Channels are bound to

- A certain location
- A certain modality
- Possibly, a “privacy level”

➢ Important for adaptation: which channels are more appropriate for a given user in a given situation?!
Accessing Channels

Channel Binding is a software or an embedded binding that wraps a driver. A driver may be a wrapper of a uAAL-aware driver or a legacy driver. A context publisher may implement a service callee or be a wrapper of a legacy applied framework.
Relationship to UI Handlers

UI Handler

may use any of

Legacy Driver

uAAL-aware Driver

Legacy Applied Abstract Driver

may be a wrapper of

wraps
Approach

ADAPTATION FRAMEWORK
Context Awareness: using the rights channels

Privacy Awareness

Text 2 Speech

UI Bus

Application 1

Take your Prozac™!
Context Awareness: Follow me without loss of data
Supporting the UI Bus in Adaptation

Parameters provided by the app
- Addressed user
- Content language & privacy level
- Dialog priority

Parameters added by the UI Framework
- the presentation location and modality
- access impairments to be considered
- modality-specific recommendations
Capabilities of the UI Handlers

- appropriateness for certain access impairments
- supported languages, modalities & privacy levels
- locations where output can be presented
- modality-specific tuning capabilities

(recall that UI handlers are the managers of I/O channels & that channels are bound to specific modalities, privacy levels & locations)
Approach

DESCRIBING A DIALOG
Need for Declarative Languages

- A direct consequence of separating application layer from the presentation layer

analogy to the WWW

| browsers | language = HTML | protocol = HTTP | Web applications |
The problem with HTML

- Not really modality-neutral
- Sometimes posing certain layout
- More abstract and neutral languages investigated since more than 10 years:
 - UIML
 - TERESA XML
 - UsiXML
 - SMIL
 - EMMA
 - XISL
 - XForms
XForms - Separation of Values from Controls

- XForms separates data and the underlying model from presentation:
 - The model specifies the values being collected (the instance), and their related logic
 - Types, restrictions
 - Initial values, Relations between values
 - Logical UI Controls with binding to the model

Source: www.w3.org/2006/Talks/05-26-steven-XForms/
Current solution inspired by XForms

- Apparently the most advanced form-based solution
- Separating the form UI description from the form data

- Define a “dialog package” based on XForms UI controls
- Use own RDF-based data model instead of adding a new complexity
The Dialog Package

- FormControl
 - ctrlRestriction
 - helpString
 - hintString
 - referencedPPath
 - children

- Submit
 - submissionID
 - confirmationMessage
 - confirmationType
 - mandatoryInput
 - formObject
 - parentDialog

- Input
 - alertString
 - mandatoryInput
 - parentGroup

- Group

- Output
 - SimpleOutput
 - mediaObject
 - contentType
 - contentURL
 - resolutionMaxX
 - resolutionMaxY
 - resolutionMinX
 - resolutionMinY
 - resolutionPreferredX
 - resolutionPreferredY

- ChoiceItem
 - value

- ChoiceList
 - subchoices
Approach

MISCELLANEOUS
Coherent representation of the whole system

- Management of Dialogs
 - Per user & priority-based management of dialog queues
 - Suspending dialogs and continuing later
- Providing the system main menu
- Handling context-free input
Support for Multimodality

- Delegated to UI handles...

- An example developed within PERSONA
 - On the input side: fusion of speech & gesture
 - On the output side: speech synchronized with visual feedback
RESOURCES
Resources

- **www.universaal.org**, esp.
 - all deliverables immediately after release
 - Newsletters, publicity material, comic
- **depot.universaal.org**, the entry point for developers (reachable also through the home page)
 - Getting started developing AAL applications
 - Learning more about the platform & contributing to the development of the platform
- **forge.universaal.org** (reachable also through the Developer Depot) with
 - source codes, Javadocs, & Wiki Pages
 - forum discussions
THANK YOU FOR PAYING ATTENTION!

Questions?

Mohammad-Reza (Saied) Tazari
Fraunhofer-Institut für
Graphische Datenverarbeitung IGD
Fraunhoferstraße 5
64283 Darmstadt

Tel +49 6151 155 – 228 | Fax – 480
saied.tazari@igd.fraunhofer.de
www.igd.fraunhofer.de

© Fraunhofer IGD