Consumer Electronics Association

- Over 2,000 member companies
- CEA also owns and produces the International CES
- CEA leads technology manufacturers in fostering CE industry growth by developing industry standards
Wireless Power is Expansive

• Wireless Power Transfer technology can be used for charging batteries or directly powering devices.
• The industry has agreed to use the term *wireless power transfer* to describe a multitude of technologies.

Wireless Power Technology

• Transmit and receive coils
• Tightly coupled and highly resonant wireless power transfer technologies
• Frequency range from 100’s kHz to 10’s MHz
Lots of Consumer Applications

iSupply predicts wireless charging of mobile devices will be a $11B industry by 2014

CEA Standards Process

CEA makes an ongoing effort to grow the CE industry by developing essential industry standards. CEA functions as a vital connection between companies, retailers and consumers to develop a unified technology roadmap.

• More than 30 Committees, Subcommittees and Working Groups
• Roughly 1,400 individual participants
• Over 300 standards in CEA library
• Accredited by the American National Standards Institute (ANSI) as a Standards Development Organization

CEA participates and as a technical contributor in the International Electrotechnical Commission (IEC) and other international standardization activities to coordinate standards-setting in a globally harmonized manner.
R6.3 Working Groups

• R6.3 Wireless Power Subcommittee
 – WG1: Nomenclature (Scope: to develop a glossary of terms related to wireless power)
 – WG2: RF Safety and Emissions (Scope: to develop a white paper and supporting documentation regarding safety & RF emissions)
 – WG3: Efficiency and Standby Power (Scope: To develop technical documents and methods of measurement for wireless power transfer efficiency and standby power)

• WG4: Highly Resonant (Scope: To develop standards and technical documents related to wireless transfer of power through magnetic induction between a Transmitter coil and Receiver coil(s) with the following properties:
 – Coupling factor (k) that can be less than 0.1, though values up to 1 may also be supported.
 – The system requires magnetic resonance.)

• WG5: Tightly Coupled (Scope: To develop standards and technical documents related to wireless transfer of power through magnetic induction between a Transmitter coil and Receiver coil where the coupling factor (k) between them is high and can be close to 1.)
45 Companies Participating

Contact Information

- Megan Hayes, CEA, 703-907-7660, mhayes@CE.org
- John Suh, R6.3 Chair, General Motors, 650-269-9606, john.suh@gm.com